Mycobacterium tuberculosis Membrane Vesicles Inhibit T Cell Activation.
نویسندگان
چکیده
Mycobacterium tuberculosis utilizes multiple mechanisms to evade host immune responses, and inhibition of effector CD4+ T cell responses by M. tuberculosis may contribute to immune evasion. TCR signaling is inhibited by M. tuberculosis cell envelope lipoglycans, such as lipoarabinomannan and lipomannan, but a mechanism for lipoglycans to traffic from M. tuberculosis within infected macrophages to reach T cells is unknown. In these studies, we found that membrane vesicles produced by M. tuberculosis and released from infected macrophages inhibited the activation of CD4+ T cells, as indicated by reduced production of IL-2 and reduced T cell proliferation. Flow cytometry and Western blot demonstrated that lipoglycans from M. tuberculosis-derived bacterial vesicles (BVs) are transferred to T cells, where they inhibit T cell responses. Stimulation of CD4+ T cells in the presence of BVs induced expression of GRAIL, a marker of T cell anergy; upon restimulation, these T cells showed reduced ability to proliferate, confirming a state of T cell anergy. Furthermore, lipoarabinomannan was associated with T cells after their incubation with infected macrophages in vitro and when T cells were isolated from lungs of M. tuberculosis-infected mice, confirming the occurrence of lipoarabinomannan trafficking to T cells in vivo. These studies demonstrate a novel mechanism for the direct regulation of CD4+ T cells by M. tuberculosis lipoglycans conveyed by BVs that are produced by M. tuberculosis and released from infected macrophages. These lipoglycans are transferred to T cells to inhibit T cell responses, providing a mechanism that may promote immune evasion.
منابع مشابه
Interspecies Communication between Pathogens and Immune Cells via Bacterial Membrane Vesicles
The production of extracellular vesicles is a universal mechanism for intercellular communication that is conserved across kingdoms. Prokaryotes secrete 50-250 nm membrane vesicles (MVs) in a manner that is regulated by environmental stress and is thought to promote survival. Since many types of host-derived stress are encountered during infection, this implies an important role for MV secretio...
متن کاملBacterial Membrane Vesicles Mediate the Release of Mycobacterium tuberculosis Lipoglycans and Lipoproteins from Infected Macrophages.
Mycobacterium tuberculosis is an intracellular pathogen that infects lung macrophages and releases microbial factors that regulate host defense. M. tuberculosis lipoproteins and lipoglycans block phagosome maturation, inhibit class II MHC Ag presentation, and modulate TLR2-dependent cytokine production, but the mechanisms for their release during infection are poorly defined. Furthermore, these...
متن کاملAnalysis of IL-33 Gene Polymorphisms (rs1157505C/G and rs11792633C/T) and the Risk of Tuberculosis in Southeastern Iran
Tuberculosis is a vagarious infectious disease that generally affects the lungs. Accordingly, in some cases, it can also affect the liver and kidney. Host genetic may affect tuberculosis caused by bacillus Mycobacterium tuberculosis. The main risk factors for the disease are a weakened immune system because of diabetes, some cancers, HIV/AIDS, severe kidney disease, cancer treatment, a...
متن کاملHuman toll-like receptors mediate cellular activation by Mycobacterium tuberculosis.
Recent studies have implicated a family of mammalian Toll-like receptors (TLR) in the activation of macrophages by Gram-negative and Gram-positive bacterial products. We have previously shown that different TLR proteins mediate cellular activation by the distinct CD14 ligands Gram-negative bacterial LPS and mycobacterial glycolipid lipoarabinomannan (LAM). Here we show that viable Mycobacterium...
متن کاملPotency of Mangosteen Pericarp Extract to Inhibit 38-kDa and Ag85 Protein Secretion by Mycobacterium tuberculosis H37Rv
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. The α-mangostin in mangosteen pericarp extract can inhibit M. tuberculosis growth. This study examined the potency of α-mangostin in mangosteen pericarp extract to inhibit 38-kDa and Ag85 protein secretion from M. tuberculosis H37Rv. The samples used in this study were divided into three independent variable groups...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 198 5 شماره
صفحات -
تاریخ انتشار 2017